Heterogeneous catalytic decomposition of hydrogen peroxide utilizing a Fe(<scp>iii</scp>)-based metal–organic framework as an efficient and persistent nanozyme

نویسندگان

چکیده

The Fe( iii )-based MOF acted as a highly efficient and recyclable heterogeneous catalyst for hydrogenperoxide decomposition with simple retrieval from the reaction mixture.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decomposition of hydrogen peroxide in a catalytic fluidized-bed reactor

The decomposition of H2O2 by a novel supported g-FeOOH catalyst was performed in a continuous fluidized-bed reactor. This catalyst has been successfully used in the treatment of organic contaminants with H2O2 in our previous work. In this study, we attempted to determine the effects of pH, H2O2 concentration, and catalyst concentration on the decomposition of H2O2. An approach, we regarded this...

متن کامل

Scanning electrochemical microscopy #54. Application to the study of heterogeneous catalytic reactions-hydrogen peroxide decomposition.

A scanning electrochemical microscopy (SECM) approach for the analysis of heterogeneous catalytic reactions at solid-liquid interfaces is described and applied. In this scheme, reactant, generated at a tip, undergoes a reaction (e.g., disproportionation) at the substrate. The theoretical background for this study, performed by digital simulations using a finite difference method, considers a ch...

متن کامل

Thermodynamic study of an effective catalytic system, hydrogen peroxide and methyltrioxorhenium

The thermodynamic of the known and very effective catalytic system, hydrogen peroxide (H2O2) and methyltrioxorhenium (MTO) is studied in different solvents using UV-Visible spectroscopic method. The thermodynamic parameters (ΔG, ΔH and ΔS) for two equilibrium reactions, MTO + H2O2 ⇌ A + H2O and A + H2O2 ⇌ B.H2O (A, [MeRe(O)2(O2)]; B.H2O, [MeRe(OH2)(O)(O2)2]), are determined. The obtained free e...

متن کامل

Controlling Non-Catalytic Decomposition of High Concentration Hydrogen Peroxide

Hydrogen peroxide (H2O2) is a strong oxidizing agent. High concentration H2O2 or High Test Peroxide (HTP) has been used extensively in the past in propulsion applications as mono and bipropellant. At low temperature, HTP can be catalytically decomposed to water and oxygen. Drawbacks to this approach include catalyst poisoning due to the presence of stabilizers in HTP, and susceptibility of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Materials advances

سال: 2022

ISSN: ['2633-5409']

DOI: https://doi.org/10.1039/d1ma01235e